

W100

2,5 MW

W2E Wind to Energy GmbH

Allgemeine Beschreibung W100 Revision: 5 Datum: 15.08.2005

Impressum

Projekt: W9x

Dokument: **Technical Description**

Titel: Allgemeine Beschreibung W100

W0402-G01-TEDE-304-W2E-003-5-G Dokument Nr.:

Sprache: Deutsch Status: Endfassung

Revision:

Klassifikation: Öffentlich

1 / Kopie (nicht registriert) Ausgabe:

Datum: 15.08.2005

W2E Wind to Energy GmbH Meschendorfer Weg 18230 Ostseebad Rerik Deutschland

Telefon: +49 38296 758-0 Fax: +49 38296 758-10

E-Mail: <u>info@wind-to-energy.de</u> Internet: www.wind-to-energy.de

Allgemeine Beschreibung W100 Revision: 5 Datum: 15.08.2005

Inhaltsverzeichnis

1	Einführung	4
2	Grunddaten	5
3	Rotor	5
4	Triebstrang	6
5	Generator	6
6	Umrichter	7
7	Transformator	7
8	Mittelspannungsschaltanlage	8
9	Kühlung und Filtration	8
10	Bremssystem	9
11	Hydraulik	9
12	Gondel	10
13	Windnachführung	10
14	Turm und Fundament	11
15	Sicherheitssystem	11
16	Condition Monitoring	12
17	Betriebsführung und Visualisierung	12
18	Blitzschutz	13
19	Leistungskennlinie	14
20	Kalkulierter Jahresenergieertrag	16
21	Technische Änderungen	

Revision: 5 Datum: 15.08.2005

1 Einführung

Die W2E-Windenergieanlagen W9x stellen eine Familie von Anlagen mit einer Nennleistung von 2,5 Megawatt und Rotordurchmessern von 80 bis 100 m dar. Die drei Varianten sind: LOW WIND, STANDARD und HIGH WIND.

Die Windenergieanlagen (WEA) dieser Familie sind drehzahlgeregelte und umrichtergeführte Anlagen mit dreiblättrigem Rotor als Luvläufer. Die Drehzahlvariabilität wird durch den Einsatz einer doppeltgespeisten Asynchronmaschine erreicht. Der sowohl netzseitig als auch maschinenseitig in IGBT-Technologie ausgeführte Umrichter ist in Niederspannung ausgeführt. Der Umrichter und der Mittelspannungstransformator sind in der Gondel platziert. Die Verstellung der Rotorblätter erfolgt durch ein elektrisches Pitch System mit Drehstromantriebstechnik.

Durch die Drehzahlregelung wird im Teillastbereich bei geringer und mittlerer Windgeschwindigkeit automatisch die bestmögliche Ausnutzung des Windangebots erzielt, unabhängig von Luftdichteschwankungen. Im Volllastbereich wird auf eine festgelegte optimale Drehzahl des Rotors geregelt. Das Drehmoment des Antriebesstrangs wird dabei konstant gehalten. Eine aktive Regelung zur Dämpfung von Triebstrangschwingungen wird überlagert, so dass ein schonender Betrieb hinsichtlich der Betriebslasten gegeben ist. Diese Betriebsweise und die komplette schalltechnische Entkopplung des Triebsstranges tragen entscheidend zur Geräuschminimierung bei.

Die Variante STANDARD mit der Nennleistung von 2,5 MW wird mit einem Rotordurchmesser von 90 Metern ausgestattet. Diese Anlage ist für die Bedingungen entsprechend der IEC 41600-1, Windklasse IEC 2a ausgelegt.

Die Variante LOW WIND ist mit einem Rotordurchmesser von 100 m und einer Nennleistung von 2,5 MW nach Windklasse IEC 3a und die Variante HIGH WIND mit 80 m und 2,5 MW nach Windklasse IEC 1a ausgelegt. Alle Anlagen sind für den Onshore-Markt konzipiert, jedoch sind notwendige Voraussetzungen für das Offshore-Geschäft – wie Condition Monitoring, Kran- und Austauschkonzepte, Plug & Play von Komponenten, wartungsfreie Energiespeicher des Pitch Systems – bereits heute verarbeitet. Die erweiterten Netzanschlussbedingungen der E.ON Netz GmbH, die technische Richtlinie des VdN "Eigenerzeugungsanlagen am Hoch- und Höchstspannungsnetz" und andere nationale und internationale Grid Codes fanden in der Entwicklungsphase Berücksichtigung.

Ein neuartiges innovatives Konzept ermöglicht die Austauschbarkeit aller Hauptkomponenten wie Generator, Getriebe, Hauptlager und Rotorblätter ohne Inanspruchnahme üblicher Schwerlastkräne.

Die folgenden Ausführungen beschreiben die Variante LOW WIND. Die Angaben gelten für die Ausführung W100 mit einem Rotordurchmesser von 100 m.

Revision: 5 Datum: 15.08.2005

2 Grunddaten

Allgemeine Daten	
Rotor	dreiblättriger Rotor als Luv-Läufer
Rotorachse	horizontal um 5° geneigt
Drehzahlregelung	dreifach unabhängiges elektrisches Pitch System
Nennleistung	2,5 MW
Startwindgeschwindigkeit	3,5 m/s
Nennwindgeschwindigkeit	11,5 m/s
Abschaltwindgeschwindigkeit	25 m/s
Rechnerische Lebensdauer	20 Jahre
Maschine ausgelegt nach	IEC 3a
Betrieb bei Umgebungstemperatur	-20 bis +40 °C

3 Rotor

Der Rotor besteht aus drei Blättern, der Rotornabe, drei Drehkränzen und elektrischen Drehstromantrieben zur Blattverstellung. Die Rotorblätter sind aus hochwertigem glasfaserverstärktem Kunststoff (GFK) hergestellt. Das Blattverstellsystem (Pitch System) ist dreifach redundant ausgeführt und in der Nabe untergebracht. Die Blätter sind mit Blitzrezeptoren ausgestattet. Die Blitzströme werden zur Nabe abgeleitet.

Rotor		
Rotordurchmesser	100 m	
überstrichene Fläche	7.854 m^2	
Leistung / Fläche	318 W/m^2	
Drehzahlbereich	9,4 bis 17,1 min ⁻¹	
Neigungswinkel	5°	
Konuswinkel	5°	
Gesamtmasse	ca. 55 t	

Nabe	
Material	Kugelgraphitguss EN-GJS-400-18-LT
	(GGG 40.3)
Masse	ca. 14,5 t (bearbeitet)

Blätter	
Material	glasfaserverstärkter Kunststoff (GFK)
Gesamtlänge	48,3 m
Masse je Blatt	ca. 11,0 t

Pitch System	
Motor	dreiphasige Asynchronmotoren, 6-polig
max. Verstellgeschwindigkeit	12°/s
Drehzahlregelung	IGBT-Umrichter
Backup	Lithium-Ionen-Akkumulator

Revision: 5 Datum: 15.08.2005

4 Triebstrang

Der Triebstrang enthält ein Halt- und Momentlager zur Aufnahme der am Rotor angreifenden Kräfte und Momente. Das Lager ist direkt mit dem Maschinenträger verbunden, über den die Rotormomente und -kräfte in die Turmstruktur abgeleitet werden. Das Rotordrehmoment wird über eine Wellenkupplung, die über eine körperschallentkoppelte formschlüssige Bolzenlagerung mit dem Getriebe verbunden ist, zur Antriebswelle des Getriebes übertragen. Die aus dem Rotor entstehenden Drehmomente werden über eine ringförmige Drehmomentstütze und den am gesamten Umfang des Getriebes angeordneten Elastomerlagern in die Maschinenträgerstruktur abgeleitet. Die Verbindung vom Getriebe zum Generator erfolgt über eine kardanische Kupplung mit Überlastsicherung.

Das Getriebe ist als zweistufiges Planetengetriebe mit einer Stirnradstufe ausgeführt. Die Kühlung ist über einen Öl-Wasser-Kühlkreislauf und einen Wasser-Luft- Kühlkreislauf mit gestufter Kühlleistung realisiert. Die Getriebelager und Zahneingriffe werden kontinuierlich über eine drehrichtungsunabhängige mechanische Ölpumpe über Vorgelege mit Spritzöl versorgt. Für Spitzenlasten wird eine zusätzliche elektrisch angetriebene Ölpumpe zugeschaltet.

Rotorlager	
Art	dreireihiges Halt- und Momentlager
Abmessungen	2.500 mm x 400 mm
Schmierung	Öl-Druckumlaufschmierung
Masse	ca. 5,5 t

Wellenkupplung	
Material	Kugelgraphitguss EN-GJS-400-18-LT
Masse	ca. 1,7 t

Getriebe	
Art	zweistufiges Planetengetriebe, eine Stirnradstufe
Nennleistung	2,671 MW
Übersetzungsverhältnis	1:79,6
Schmierung	mechanische und schaltbare elektrische Ölpumpe
Ölmenge	ca. 430 l
Öltyp	VG 320
Ölwechsel	jährliche Kontrolle, Wechsel nach Bedarf
Masse inkl. Öl und Anbauten	ca. 21,5 t

Generatorkupplung	
Art	Stahllamellenkupplung mit Überlastsicherung
Masse	ca. 525 kg

5 Generator

Es kommt eine dreiphasige Asynchronmaschine mit Schleifringläufer in Niederspannungstechnik zum Einsatz. Die Maschine wird luftgekühlt. Ein aufgesetzter Luft-Wasser-Wärmetauscher überführt die Abwärme in einen Kühlwasserkreislauf. Das Schleifringsystem ist so aufgebaut, dass ein dauernder Betrieb von über einem Jahr ohne Wartung gegeben ist. Auf der Non Drive End Seite des Generators ist ein Inkrementaler Drehgeber zur Drehzahlerfassung angeflanscht. Der Generator wird schwingungsdämpfend gelagert.

Revision: 5 Datum: 15.08.2005

Generator	
Art	Asynchronmaschine mit Schleifringläufer
Schutzart	IP 55
Nennleistung	2,5 MW
Nennspannung	690 V 3~
Frequenz	50 Hz
Leistungsfaktor	0,95 kapazitiv bis 0,95 induktiv
Drehzahlbereich im Netzbetrieb	750 bis 1.310 min ⁻¹
Pole	6
Masse	ca. 10,6 t
IEC-Baugröße	560
Drehzahlerfassung	Inkrementaler Drehgeber
	mit 2048 Impulsen / Umdrehung
Kühlung	aufgesetzter Luft-Wasser-Wärmetauscher

6 Umrichter

Der Umrichter ist in Niederspannungstechnik ausgeführt und wird in der Gondel platziert. Er ist zwischen dem Netz und dem Läufer der Asynchronmaschine angeordnet und realisiert das Prinzip der doppeltgespeisten Asynchronmaschine. Sowohl der netzseitige als auch der maschinenseitige Stromrichter ist mit IGBT als leistungselektronische Stellglieder ausgestattet. Mit dieser Technologie entsteht ein hochdynamisches Antriebssystem mit hervorragenden Netzeigenschaften. Durch Einsatz von Folienkondensatoren und Verzicht auf Lichtwellenleitertechnologie wird ein besonders robustes und langlebiges System erreicht. Die Regelungstechnik erlaubt eine aktive Dämpfung von Triebstrangschwingungen. Die Anforderungen aus der Richtlinie des VdN "Eigenerzeugungsanlagen am Hoch- und Höchstspannungsnetz" und aus den Vorgaben der E.ON Netz GmbH werden erfüllt.

Umrichter	
Art	Indirekter Umrichter mit
	Gleichspannungszwischenkreis
IGBT	Klasse 1.700 V
Schutzart	IP 54
max. Strom netzseitig	ca. 650 A 3~
max. Strom maschinenseitig	ca. 1.000 A 3~
Nennspannung	690 V 3~
Frequenz (netzseitig)	50 / 60 Hz
Masse	ca. 2,05 t
Maße einschl. Einspeisung B x H x T	3.600 mm x 2.200 mm x 600 mm
Kühlung	Wasser
Schnittstellen	CAN, Ethernet

7 Transformator

Der Transformator zur Wandlung der erzeugten elektrischen Leistung von 690 V in Mittelspannung wird in der Gondel platziert. Der Öltransformator wird als Zweiwicklungstransfomator in der Schaltgruppe Dyn 5 ausgeführt. Umweltfreundliches und feuerbeständiges Silkonöl wird verwendet. Der Silikonöl-Transformator zeichnet sich durch Kompaktheit, geringe Leerlaufverluste, niedrige Recyclingkosten, Überlastkapazität und hohe Widerstandfähigkeit gegen Überspannungen und Oberschwingungen aus.

Revision: 5 Datum: 15.08.2005

Transformator	
Art	Silikonöl
Nennleistung	2,7 MVA
Nennspannung	690 V 3~ / 20 kV 3~
Schaltgruppe	Dyn 5
Nennkurzschlussspannung	6%
Frequenz	50 Hz
Masse inkl. Öl	5,1 t
Maße einschl. Einspeisung B x H x T	ca. 1.770 mm x 2.000 mm x 1.250 mm
Kühlung	Luft

8 Mittelspannungsschaltanlage

Die Mittelspannungsschaltanlage befindet sich im Turmfuß (Rohrturm) oder innerhalb einer Kompaktstation (Gitterturm). Die gasisolierte, metallgekapselte Schaltanlage ist mit einem Vakuum-Leistungsschalter nach IEC 298, mechanisch verriegeltem Sammelschienentrennschalter, Abgangserdungsschalter und Schutzrelais zur Aufstellung in abgeschlossenen elektrischen Betriebsräumen ausgestattet.

Mittelspannungsschaltanlage	
Isolier- und Schaltmedium	SF6
Nennspannung	24 kV
Nennstrom	200 A
Nennstoßstrom	40 kA
Nenn-Kurzzeitstrom	3 s / 16 kA
Masse	ca. 400 kg
Maße einschl. Einspeisung B x H x T	680 mm x 1.380 mm x 720 mm
Schutzrelais	Überstromzeitschutz mit UMZ-Charakteristik

9 Kühlung und Filtration

Getriebe, Generator und Umrichter der WEA haben voneinander unabhängige aktive Kühlsysteme. Die Wasserkühlkreisläufe des Generators, des Umrichters und des Getriebes sind gleich aufgebaut. Es sind drei separate Einheiten, die unabhängig von einander arbeiten. Alle Systeme sind so ausgelegt, dass sich auch bei hohen Außentemperaturen optimale Betriebstemperaturen einstellen. Für den Frostschutz wird dem Kühlwasser Glykol zugesetzt.

Getriebekühlung und Filtration: Die Wärmeabfuhr aus dem Getriebe an einen Öl-Wasser-Plattenwärmetauscher wird über ein mechanisch und ein elektrisch angetriebenes Pumpensystem realisiert. Das erwärmte Wasser wird in einem mit äußerer Umgebungsluft durchfluteten Wasser-Luft-Wärmetauscher gekühlt. Das abgekühlte Öl wird über ein im und am Getriebe liegendes Rohrsystem an die thermisch hochbelasteten Bauteile befördert. Eine Filtereinheit mit 50 μ m / 10 μ m sorgt bei permanenter Filtration für die entsprechende Ölreinheitsklasse 17/15/12 gemäß ISO 4406 oder besser. Die Filterstandzeit ist für eine Laufzeit von 12 Monaten ausgelegt.

Generatorkühlung: Die Wärmeabfuhr des Generators an den Wasserkreislauf erfolgt indirekt über einen Luft-Wasser-Wärmetauscher, der oberhalb des Generators platziert und mit diesem fest verbunden ist. Das erwärmte Wasser wird in einem mit äußerer Umgebungsluft durchfluteten Wasser-Luft-Wärmetauscher gekühlt.

Revision: 5 Datum: 15.08.2005

Umrichterkühlung: Der Umrichter der WEA besitzt ein Wasserkühlsystem für die Leistungselektronik. Das im Umrichter erwärmte Wasser wird in einem mit äußerer Umgebungsluft durchfluteten Wasser-Luft-Wärmetauscher gekühlt. Kaltes Kühlwasser wird vor dem Einschalten des Umrichters erwärmt.

Generator- und Getriebelager, Getriebeöl, Generatorwicklungen, Stromrichtermodule und die Kühlmedien werden hinsichtlich ihrer Temperatur automatisch erfasst. Anhand von Betriebszuständen und –werten erfolgt die Steuerung der Kühlkreisläufe, so dass ein möglichst gleichförmiger und optimaler Temperaturbereich eingehalten wird.

10 Bremssystem

Das aerodynamische Bremssystem wird durch drei unabhängig und redundant verstellbare Rotorblätter realisiert, die in einem Bereich zwischen 0° und 90° verfahren werden können.

Zusätzlich zur Einzelblattverstellung ist die WEA mit einer hydraulischen Scheibenbremse ausgestattet. Diese mechanische Bremse unterstützt das Abbremsen mit den Rotorblättern und bringt den Rotor zum Stillstand. Die Bremse arbeitet als Aktivbremse. Sie dient der Personensicherheit zum Anhalten des Rotors im Servicemode und wird unterstützend beim Auslösen des Sicherheitssystems eingesetzt. Sie entwickelt ein Moment entsprechend dem 0,7-fachen Nennmoment.

Nach dem Stillstand der Anlage kann der Rotor mittels mechanischer Arretierung auf der Antriebsseite und alternativ auf der schnelllaufenden Seite des Getriebes gesichert werden.

Aerodynamische Bremse	
Art	dreifach unabhängige Einzelblattverstellung
Ausführung	elektrisch

Mechanische Bremse	
Art	Scheibenbremse
Anordnung	auf der schnellen Welle
Scheibendurchmesser	940 mm
Anzahl der Bremskaliber	1
Material der Bremsbeläge	Sintermetall

11 Hydraulik

Das dezentral gestaltete hydraulische System besteht aus zwei Aggregaten und wird für die mechanische Bremse des Triebstrangs und für die Azimutbremse eingesetzt.

Hydraulisches System	
Hydrauliköl	VG 32
Öltank	ca. 31
Nennleistung der Hydraulikpumpen	0,75 kW
Überwachung	Temperatur, Öldruck, Pumpenlaufzeit

Revision: 5 Datum: 15.08.2005

12 Gondel

Die Gondel besteht aus einem Maschinenträger und der Kabine. Der Maschinenträger stellt gleichzeitig das Unterteil der Verkleidung dar und dient als Auffangbehälter bei Undichtigkeiten des Kühl- und Schmiersystems. Die Seitenteile und das Dach werden aus hochwertigem, glasfaserverstärktem Kunststoff (GFK) hergestellt. Das Dach der Gondel wird hydraulisch geöffnet. Durch die Form der Gondel und die Anordnung des Kühlers wird die natürliche Umströmung für die Kühlung genutzt.

Gondel	
Art des Bodenrahmens	Stahlkonstruktion
Material	S235 JRG2
Art der Verkleidung	Schalenkonstruktion auf geschweißtem Rahmen
Material	glasfaserverstärkter Kunststoff / S235JR

Windnachführung

Die Windrichtung wird in Nabenhöhe mit zwei Windfahnen kontinuierlich gemessen. Bei einer Überschreitung der zulässigen Abweichung wird die Gondel aktiv nachgeführt. Der Toleranzbereich des sogenannten Yaw-Fehlers, der die Abweichung zwischen Windrichtung und Gondelposition darstellt, ist abhängig von der Windgeschwindigkeit. Die Nachführung erfolgt durch vier Getriebemotoren, die einen innenverzahnten gelagerten Drehkranz verstellen. Im Stillstand der Gondel werden die hydraulischen Haltebremsen am Drehkranz und die elektromagnetisch betätigten Bremsen der Motoren festgesetzt.

Das System zur Windnachführung (Azimutsystem) verfährt die Gondel automatisch, wenn die Verdrillung der Leitungen im Turm einen Grenzwert erreicht hat.

Der Einsatz von zwei Windrichtungsgebern und zwei Anemometern erhöht die Sicherheit und die Verfügbarkeit der Anlage.

Azimutlagerung	
Art	Kugeldrehverbindung
Material	42 Cr Mo4
Masse	ca. 2,3 t

Azimutantrieb	
Motor	dreiphasige Asynchronmotoren
	mit Kurzschlussläufer
Getriebe	vierstufiges Planetengetriebe
Anzahl der Antriebe	4
Schmierung	Öl, ISO VG 620
Nachführgeschwindigkeit	ca. 0,5 °/s

Azimutbremse		
Art	hydraulische Scheibenbremse	
Material Bremsbeläge	organisch	
Anzahl der Bremskaliber	4	

Revision: 5 Datum: 15.08.2005

14 Turm und Fundament

Die WEA wird auf einem Rohrturm mit den Nabenhöhen von 85 m oder 100 m oder auf einem Gitterturm mit den Nabenhöhen von 117 m, 141 m und 160 m errichtet. Die Aufstiegsleiter mit der Sicherheitseinrichtung und die Ruhe- und Arbeitsplattformen befinden sich innerhalb des Mastes. Optional kann der Turm mit einem Fahrstuhl ausgerüstet werden. Der Gitterturm ist standardmäßig mit einem Aufzugssystem ausgerüstet.

Der Korrosionsschutz bei den Rohrtürmen aus Stahl wird durch eine Sandstrahlung und durch eine Epoxidharz-Beschichtung der Oberfläche gemäß ISO 12944 und bei den Gittertürmen durch Feuerverzinkung nach DIN EN ISO 1461 gewährleistet. Die Fundamentkonstruktion für die WEA hängt von den Bodenverhältnissen am vorgesehenen Standort ab.

	Rohrturm	Gitterturm
Material	S235 JRG2, S355 J2G3	S235 JRG2, S355 J2G3
Korrosionsschutz	Epoxidharz-Beschichtung	Feuerverzinkung
Turmfußhalterung	Flansch und Bolzen im	Eckstiele im Fundament
	Fundament einbetoniert	einbetoniert

Nabenhöhe	Rohrturm		Gitterturm		
	85 m	100 m	117 m	141 m	160 m
Klasse	IEC 3a,	IEC 3a,	IEC 3a,	IEC 3a,	IEC 3a,
	DIBt 2a	DIBt 2a	DIBt 2a	DIBt 1a	DIBt 1a
Anzahl der Turm-	4	5	-	-	-
segmente					
Masse ohne Ein-	200 t	290 t	230 t	295 t	350 t
bauten (circa)					

15 Sicherheitssystem

Das Sicherheitssystem der WEA unterliegt in seiner Ausführung einer besonderen Sorgfalt und wird entsprechend den strengen Vorgaben der Richtlinie des Germanischen Lloyd realisiert. Aufgabe des Sicherheitssystems ist es, die WEA unter allen Umständen – insbesondere bei Versagen der Betriebsführung oder einzelner Komponenten oder Systeme – in einen sicheren Zustand zu bringen. Das Sicherheitssystem ist für die Kategorie 3 nach europäischen Maschinenrichtlinie ausgeführt.

Das Sicherheitssystem umfasst: ein Sicherheitsschaltgerät, den Überstromschutz des Leistungsschalters, mehrere Not-Aus-Taster, Grenzwertrelais für die Rotor- und die Generatordrehzahl, einen Watchdog des Betriebsführungssystems, Endlagenschalter für die Leitungsverdrillung, einen Öldruck- und Hermetikschutz des Mittelspannungstransformators, einen Grenztaster mit Federstab für die Gondelbeschleunigung - den sogenannten Rüttelschalter – sowie einen Schalter je Achse des Pitch Systems, der bei Versagen eines Umrichter des Pitch Systems, bei unzulässiger Abweichung zwischen den beiden unabhängigen Gebern des Blattwinkels, bei Verlust der Kommunikation zum Betriebsführungssystem, bei Blattfehlstellungen und bei Unterschreiten des Mindestladezustands des Backup schaltet.

Abhängig vom auslösenden Gerät fallen die Not-Aus-Schütz ab oder der Leistungsschalter wird ausgelöst oder der Azimut wird gesperrt. Das Pitch System wird aktiviert. Die mechanische Bremse wird nur bei Not-Aus und bei Überdrehzahl verwendet.

Revision: 5 Datum: 15.08.2005

16 Condition Monitoring

Die WEA ist mit einem System zum Condition Monitoring ausgestattet. Mittels akustischer Sensoren, die sich am Hauptlager, am Getriebe und am Generator befinden, werden breitbandig Beschleunigungen aufgezeichnet. Auswerteverfahren sind u. a. Hüllkurvenspektren, Amplitudenspektren, Korrelationsverfahren, spezielle Mittelungsverfahren und Best-Case-Auswahlverfahren. In die Auswertung werden außerdem die Drehzahl des Rotors, die erzeugte Wirkleistung und die Windgeschwindigkeit einbezogen. Das Condition Monitoring basiert auf langjährigen Erfahrungen und wird ständig weiterentwickelt. Insbesondere werden die Ergebnisse und Vorschläge der Allianz Zentrum für Technik GmbH sowie die Forderungen des Germanischen Lloyd in die Entwicklung einbezogen und umgesetzt.

17 Betriebsführung und Visualisierung

Die Betriebsführung, Regelung und Visualisierung der Anlage erfolgt durch eine Speicherprogrammierbare Steuerung (SPS), welche die Sensoren und Systeme der Anlage und der Umgebung abfragt, nach erprobten Algorithmen auswertet und im Ergebnis und in Abhängigkeit der gesetzten Parameter die Ausgaben an Aktoren und Systeme vornimmt.

Die Ablaufsteuerung ist durch Zustände und Übergangsbedingungen (Petri-Netze) definiert. Ein Satz von mehreren Hundert Parametern ermöglicht die genaue Einstellung und Optimierung der Anlagensteuerung. Die Verwaltung von Status und Alarmen ist Datenbank-basiert. Ausgiebig getestete Regelstrukturen sorgen für den optimalen Betrieb der Anlage im Teilund Volllastbereich hinsichtlich Energieertrag und Minimierung der Lasten.

Die Hardwareplattform der Betriebsführung, die WP4000 der Firma Mita-Teknik a/s, arbeitet ohne drehende Teile, ist für raue Umgebungsbedingungen entwickelt worden und ist ohne den Einsatz von PC-Technik und Windows-basierten Systemen in besonderer Weise für die harten Einsatzbedingungen und die hohen Anforderungen an die Verfügbarkeit der Anlage und der Anlagendaten geeignet. Die WP4000 ist modular aufgebaut. Neben dem eigentlichen Controller sind Module für alle typischen analogen und digitalen Ein- und Ausgabeformate einschließlich verschiedener Busprotokolle verfügbar. Für Vermessungszwecke sind zusätzliche Module anschaltbar, deren Werte ohne Programmänderungen zusätzlich aufgezeichnet werden.

Die Kommunikation zwischen verschiedenen abgesetzten Modulen der Steuerung erfolgt über ein fehlertolerantes kollisionsfreies Ethernet-Netzwerk. Die Kommunikation zwischen Geräten der Gondel und der Nabe erfolgt über Schleifringe mittels CAN.

Die Bedienung der Anlage erfolgt über Control Panels, die sich in der Gondel und am Turmfuß befinden. Mittels PC oder Laptop kann die WEA aus der Ferne über Telekommunikation sowie innerhalb des Windparks und innerhalb der Anlage durch Kopplung an das Ethernet umfassend bedient und beobachtet werden, Trends und Ertragsdaten können ausgelesen und analysiert werden.

Die Vernetzung zwischen Anlagen eines Windparks erfolgt ebenfalls über Ethernet, das jedoch von den Kommunikationswegen innerhalb einer Anlage unabhängig und getrennt ausgeführt ist. Geräte, die über eine eigene Steuerung verfügen wie der Umrichter oder die Umrichter des Pitch Systems, werden ebenfalls über das Ethernet des Windparks vernetzt und sind deshalb aus der Ferne erreichbar. Die Verbindung zwischen Windparknetz und Kunden- oder Servicerechnern wird in der Regel über ISDN-Verbindungen hergestellt.

Revision: 5 Datum: 15.08.2005

Durch die Ethernettechnologie ist es sehr einfach möglich, weitere standardisierte Technologien oder Geräte in der WEA zu installieren. Hierzu gehören zeitweise eingesetzte Messmittel oder Computer, aber auch der Einsatz von Web-Kameras oder Mikrofonen ist anwendbar.

Die WP4000 verfügt über die smtp- und html-Protokolle, so dass eine E-mail-basierte Alarmierung und eine web-basierte Visualisierung ermöglicht wird.

Die WP4000 verfügt über einen 64 MB großen remanenten Speicher, der bei Netzausfall über einen Kondensator gestützt wird. Bei längerem Netzausfall wird der Speicherinhalt in nichtflüchtigen Speicher hinterlegt. Der Speicher ist geeignet, Status, Alarme und Trends in hohem Umfang zu speichern.

Zur Synchronisation der Uhren und der Leuchten der Flugwarnbefeuerung können optional Module für den Empfang des GPS-Signals oder der Atomuhr DCF77 eingesetzt werden.

Steuerung	
Тур	WP4000
Umgebungstemperatur	-20°C bis 60°C
Kommunikation zwischen WP-Line	CAN (nah), Ethernet (fern)
Schnittstellen	RS 232, RS 485, Ethernet
Protokolle	M-Net, T.C. 88, smtp, http
Busankopplung	CAN, Interbus, Profibus

18 Blitzschutz

Bei der Entwicklung der Anlage wurde dem Blitzschutz höchste Aufmerksamkeit gegeben. Für alle Komponenten wird ein höchst zuverlässiger Schutz erreicht. Der Blitz- und Überspannungsschutz der Gesamtanlage entspricht dem Blitz-Schutzzonen-Konzept für die Schutzklasse I und richtet sich nach den Normen IEC 61024/1, IEC 61312-1, DIN VDE 0185 Teil 103 sowie DIN VDE 0100 Teil 534.

Das Blitzschutzsystem der Windenergieanlage besteht aus einer individuell angepassten Kombination von einzelnen Schutzmaßnahmen, die aus folgenden Bereichen ausgewählt wurden:

- Äußerer Blitzschutz nach DIN V VDE V 0185-3 (VDE V 0185 Teil 3), mit dem der Blitzstrom aufgefangen, abgeleitet und in die Erde verteilt wird,
- Potentialausgleichsmaßnahmen, durch die Potentialdifferenzen minimiert werden,
- räumliche Schirmung, durch die das von Blitzeinschlägen hervorgerufene magnetische Feld in den Schalt- und Steuerschränken und damit auch induzierte Spannungen und Ströme minimiert werden,
- Leitungsführung und -schirmung, durch die induzierte Spannungen und Ströme minimiert werden.

Die Rotorblätter sind seitens des Herstellers mit Blitzrezeptoren ausgestattet. Die Windmesser sind serienmäßig mit jeweils einem geerdeten Blitzschutzkäfig versehen. Auf dem Dach der Gondel ist ein Blitzableiter angebracht.

Sowohl das Fundament der WEA als auch das der Mittelspannungsschaltanlage, sofern separat vorhanden, werden mit einem Ringerder und Potenzialausgleich nach DIN 18014 ausge-

Revision: 5 Datum: 15.08.2005

führt. Die Ringerder der Gebäude werden mit in der Erde verlegtem Bandeisen verbunden. Der Turm wird an vier gleichmäßig über den Umfang des Turms verteilen Stellen mit dem Ringerder des Fundaments verbunden.

Die Windenergieanlage wird in Blitzschutzzonen unterteilt, so dass auch örtliche Unterschiede von Anzahl, Art und Empfindlichkeit der elektrischen und elektronischen Geräte berücksichtigt werden können. Für jede Blitzschutzzone werden mit Hilfe der Risikoanalyse nach DIN V VDE V 0185-2 (VDE V 0185 Teil 2) diejenigen Schutzmaßnahmen ausgewählt, die einen optimalen Schutz bei minimalen Kosten bieten.

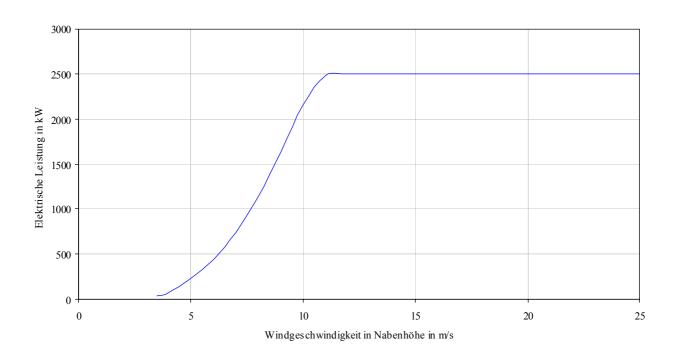
Überspannungsschutzgeräte mit geeigneter Energietragfähigkeit für Energie-, MSR- oder Datenleitungen sind an Eintrittsstellen der Blitzschutzzonen in allen Schaltschränken installiert.

Die elektrische Anlage wird nach den Grundsätzen des TN-S-Systems entsprechend DIN VDE 0100 ausgeführt. Dieses System hat den Vorteil, dass der Neutralleiter (N) und der Schutzleiter (PE) im gesamtem System getrennt geführt werden. Durch diese Anordnung ist sichergestellt, dass keine betriebsbedingten Ströme durch den Schutzleiter fließen.

Das 690V-Netz der Windenergieanlage ist ein TN-S-Netz. Der Sternpunkt des Transformators mit der Schaltgruppe Dyn5 mit der Übersetzung von 20 kV auf 690 V wird geerdet. Mit einem Spartransformator mit der Schaltgruppe Yan0 und der Übersetzung 690 V / 400 V wird ein Netz zur Versorgung der Hilfsantriebe, der Beleuchtung und der Steuereinrichtung geschaffen. Das 400 V Netz liegt als TN-S-Netz vor und wird mit Differenzstromüberwachung betrieben. Mit einem einphasigen Trenntransformator mit der Übersetzung 690 V / 230 V wird die Versorgungsspannung für den Bereich Steuerung und Sensorik erzeugt.

Alle Leitungen sind geschirmt ausgeführt. Schirme werden beidseitig mit dem Potentialausgleichssystem verbunden. Soweit technisch möglich werden Schirme 360° umlaufend mit Schirmklemmen angebunden. Schirme der Datenleitungen für Bussysteme und Datenleitungen Hochfrequenz werden an den jeweiligen Endgeräten entsprechend der Norm aufgelegt. Nicht geschirmt sind ausschließlich die Leitungen zu den Leuchten und Steckdosen in der Gondel sowie alle Leitungen und Kabel im Turm. Datenleitungen zwischen Gondel und Turmfuß sowie zwischen Anlagen eines Windparks sind als Lichtwellenleiter ausgeführt.

19 Leistungskennlinie


Die Leistungskennlinie der WEA wurde für folgende Bedingungen berechnet:

Berechnungsbedingungen	
Simulationsprogramm	Flex5
Rotordurchmesser	100 m
Typ der Rotorblätter	EU 100
Nenndrehzahl	$14,45 \text{ min}^{-1}$
Luftdichte	$1,225 \text{ kg/m}^3$
Terrainsteigung	5°
Turbulenzintensität	10%
Windgradient	0,16
Berechnung laut Norm	IEC 61400-12

Allgemeine Beschreibung W100 Revision: 5 Datum: 15.08.2005

Windgeschwindigkeit	Elektrische Leistung
in Nabenhöhe	Dieker isene Beistung
in m/s	in kW
3,5	36,2
4	71,3
5	226,8
6	449,9
7	742,1
8	1133,8
9	1641,0
10	2162,3
11	2477,0
12	2500,0
13	2500,0
14	2500,0
15	2500,0
16	2500,0
17	2500,0
18	2500,0
19	2500,0
20	2500,0
21	2500,0
22	2500,0
23	2500,0
24	2500,0
25	2500,0

Revision: 5 Datum: 15.08.2005

20 Kalkulierter Jahresenergieertrag

Die kalkulierten Jahreserträge sind für Standardbedingungen entsprechend der IEC 61400-12 berechnet worden und gelten für eine theoretische Verfügbarkeit von 100% einer Einzelanlage. Die kalkulierten Jahreserträge wurden unter den Berechnungsbedingungen entsprechend Abschnitt 19 ermittelt und können eine standortbezogene Prognose nicht ersetzen.

Windgeschwindigkeit	Kalkulierter
in Nabenhöhe	Jahresenergieertrag
im Jahresmittel	
in m/s	in MWh
5,0	4.080
5,5	5.170
6,0	6.277
6,5	7.365
7,0	8.409
7,5	9.393
8,0	10.307
8,5	11.144
9,0	11.900

21 Technische Änderungen

Die oben dargestellten technischen Beschreibungen und Daten stehen unter dem Vorbehalt möglicher Änderungen und stellen keine Garantien oder den Hersteller verpflichtende Zusagen dar. Eine Haftung für technische Parameter etc. übernimmt der Hersteller lediglich auf Basis ausdrücklicher Regelungen in entsprechenden Verträgen.